The SdiA-regulated gene srgE encodes a type III secreted effector.
نویسندگان
چکیده
Salmonella enterica serovar Typhimurium is a food-borne pathogen that causes severe gastroenteritis. The ability of Salmonella to cause disease depends on two type III secretion systems (T3SSs) encoded in two distinct Salmonella pathogenicity islands, 1 and 2 (SPI1 and SPI2, respectively). S. Typhimurium encodes a solo LuxR homolog, SdiA, which can detect the acyl-homoserine lactones (AHLs) produced by other bacteria and upregulate the rck operon and the srgE gene. SrgE is predicted to encode a protein of 488 residues with a coiled-coil domain between residues 345 and 382. In silico studies have provided conflicting predictions as to whether SrgE is a T3SS substrate. Therefore, in this work, we tested the hypothesis that SrgE is a T3SS effector by two methods, a β-lactamase activity assay and a split green fluorescent protein (GFP) complementation assay. SrgE with β-lactamase fused to residue 40, 100, 150, or 300 was indeed expressed and translocated into host cells, but SrgE with β-lactamase fused to residue 400 or 488 was not expressed, suggesting interference by the coiled-coil domain. Similarly, SrgE with GFP S11 fused to residue 300, but not to residue 488, was expressed and translocated into host cells. With both systems, translocation into host cells was dependent upon SPI2. A phylogenetic analysis indicated that srgE is found only within Salmonella enterica subspecies. It is found sporadically within both typhoidal and nontyphoidal serovars, although the SrgE protein sequences found within typhoidal serovars tend to cluster separately from those found in nontyphoidal serovars, suggesting functional diversification.
منابع مشابه
Salmonella SdiA recognizes N-acyl homoserine lactone signals from Pectobacterium carotovorum in vitro, but not in a bacterial soft rot.
Genomes of Salmonella enterica isolates, including those linked to outbreaks of produce-associated gastroenteritis, contain sdiA, which encodes a receptor of N-acyl homoserine lactones (AHL). AHL are the quorum-sensing signals used by bacteria to coordinately regulate gene expression within -their populations. Because S. enterica does not produce its own AHL, SdiA is hypothesized to function in...
متن کاملYersinia enterocolitica inhibits Salmonella enterica serovar Typhimurium and Listeria monocytogenes cellular uptake.
Yersinia enterocolitica biovar 1B employs two type three secretion systems (T3SS), Ysa and Ysc, which inject effector proteins into macrophages to prevent phagocytosis. Conversely, Salmonella enterica serovar Typhimurium uses a T3SS encoded by Salmonella pathogenicity island 1 (SPI1) to actively invade cells that are normally nonphagocytic and a second T3SS encoded by SPI2 to survive within mac...
متن کاملIsolation of Ralstonia solanacearum hrpB constitutive mutants and secretion analysis of hrpB-regulated gene products that share homology with known type III effectors and enzymes.
The Hrp type III secretion system (TTSS) is essential for the pathogenicity of the Gram-negative plant pathogen Ralstonia solanacearum. To examine the secretion of type III effector proteins via the Hrp TTSS, a screen was done of mutants constitutively expressing the hrpB gene, which encodes an AraC-type transcriptional activator for the hrp regulon. A mutant was isolated that in an hrp-inducin...
متن کاملSalmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid.
Quorum sensing is a phenomenon in which bacteria sense and respond to their own population density by releasing and sensing pheromones. In gram-negative bacteria, quorum sensing is often performed by the LuxR family of transcriptional regulators, which affect phenotypes as diverse as conjugation, bioluminescence, and virulence gene expression. The gene encoding one LuxR family member, named sdi...
متن کاملSalmonella Typhimurium invasion of HEp-2 epithelial cells in vitro is increased by N-acylhomoserine lactone quorum sensing signals
BACKGROUND In Gram-negative bacteria, the most commonly studied quorum sensing signals are the N-acylhomoserine lactones (AHLs). In Salmonella, AHLs are recognized by SdiA, which is believed to be a sensor of AHLs produced by other bacteria, since Salmonella does not produce AHLs itself. It has been speculated that AHLs produced by the gastrointestinal flora may influence the regulation of viru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 196 12 شماره
صفحات -
تاریخ انتشار 2014